

PV730 SV112

Copyright © 2024 The Finit Group LLC DBA Finit. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the Subscription License Agreement or Software License and Services Agreement between Finit and the warrantee. This document does not itself constitute a representation or warranty with respect to the software or any related matter.

Contents

Solution Overview
Installation & Initial Setup
Dependencies 4
Solution Development Location
Installation4
Initial Setup6
Key Solution Areas
Allocation Register
Allocation Calculation
Genealogy Reporting
Solution Administration
Global Settings
Manage License & Solution
Defining Allocations
Factors Definition
Allocations Definition
Enable Navigation to Genealogy Drill17
Running Allocations
Allocation Custom Calculate DM Step
Allocations Output
Reporting
Solution Reports
Audit Reports
Help and Miscellaneous Information22
Troubleshooting & FAQs22
OneStream Display Settings
Solution Modification Considerations

Solution Overview

AllocateIt, Finit's Advanced Allocation Manager, simplifies allocation development & increases visibility into the origins of allocated data.

With Allocatelt, you can:

- Quickly create allocation definitions without writing any code
- Control precisely when, where, and how allocations are run with a purpose-built business-friendly configuration
- Easily install, configure, and maintain allocation definitions without relying on technical resources or external consultants
- Gain more insight with robust genealogy reporting, a full audit trail of the allocation process
- Integrate pre-built dashboards to any cube view to enable the drill down into the allocation genealogy
- Leverage OneStream's proven calculation engine & built-in multi-threading capabilities to optimize performance

Installation & Initial Setup

This section contains important details about the solution's planning, configuration, and installation. Before you install the solution, familiarize yourself with these details.

Dependencies

Component	Description
OneStream 7.3.0 or later	Minimum OneStream Platform version required to install this version of
	the solution

Solution Development Location

Before beginning installation, decide whether to build the solution directly in the Production OneStream application or a separate Development OneStream application. This section provides some key considerations for each option.

Production OneStream Application: The primary advantage of building the solution in a Production application is that you will not have to migrate the resulting work from a Development application. However, there are intrinsic risks when making design changes to an application used in a Production capacity and not advised.

Note: Finit strongly recommends that you implement the solution in the Development environment with a fresh copy of the Production application before starting work

Development OneStream Application: As a best practice, use the Development OneStream application to configure and test the solution initially.

Installation

- 1. Log into OneStream.
- 2. On the **Application** tab, click **Tools > Load/Extract**.
- 3. On the Load tab, locate the solution package using the Select File icon and click Open.
- 4. When the solutions file name appears, click **Load**.
- 5. Click **Close** to complete the installation.

Package Contents

Finit Allocation Manager is the user interface for the settings & setup of AllocateIt.

BUSINESS RULES

The following Business Rules are included:

- FALL_SolutionHelper
- FALL_HelperQueries
- FALL_ParamHelper
- FALL_ImportExportHelper
- FALL_Allocation
- FALL_BuildAllocTable
- FALL_GlobalRoutines
- FALL_Licensing
- FALL_Settings
- FALL_Setup

DATA STRUCTURES

The following Data Tables will be created during installation of the solution:

- XFW_FALL_AuditLog
- XFW_FALL_ControlLists
- XFW_FALL_Filter
- XFW_FALL_Main
- XFW_FALL_Genealogy
- XFW_FALL_Alloc_Master

Initial Setup

The first time you run the solution, you are guided through the solution setup process.

In OneStream, click OnePlace > Dashboards > Finit Allocation Manager (FALL) > Finit Allocation Manager.

OnePlace	Application	System	+							
→ Workflow ▲										
Cube Views										
🖬 Dashboards 🔹										
🔺 💑 Finit Allocation Manager (FALL)										
Finit Allocation Manager										

License Validation

Step 1: Enter a valid license key obtained from the OneStream PartnerPlace team

Allocateit Advanced Allocation M	SOLUTION SETUP	
LICENSE VALIDATION		
LICENSE KEY		
LICENSE INFORMATION		
Vendor Name:	Number of Users:	
Solution Identifier:	Expiration Date: Is Expired:	
Customer Name: Security Group:	Is Valid:	False
WARNING: MarketPlace license is invalid.		
Validate Begin Setup		
- Click Validate		

Allocateit Advanced Allocation Manager

SOLUTION SETUP

SOLUTION SETUP

CENSE VALIDATION			
LICENSE INFORMATION Vendor Name: Solution Identifier:	Finit FINAI	Number of Users: Expiration Date:	10 12/31/9999
Customer Name: Security Group:	TEST1 TestGroup	Is Expired: Is Valid:	False True
Validate Begi	n Setup		

If the "Begin Setup" button turns from gray to blue/green then click Begin Setup to begin the setup process. If not, proceed to Step 2.

Step 2 (if not validated after Step 1): If you have not already set up the required solution security group you will need to do so now, and assign access, to clear your validation error and begin the setup process.

Take note of the security group name from the license information section below and create a security group with that exact name and case. Next, add the necessary users to this group and click the Validate button again. To proceed in the setup, the active user installing the solution needs access and any further changes can be made later.

Allocateit Advanced Allocation Manager

LICENSE INFORMATION Vendor Name: Finit Number of Users:
Vendor Name: Finit Number of Users:
Solution Identifier: FINAI Expiration Date 12/31/99
Customer Name: TEST1 Is Expire. Fall
Security Group: TestGroup Fals
WARNING: Solution security group 'TestGroup' needs created and assigned access.

NOTE: Below is the message you will receive if the key itself is invalid.

Allocateit Advanced Allocation	Manager	SOLUTION SETUP
LICENSE VALIDATION		
LICENSE KEY		
LICENSE INFORMATION		
Vendor Name:	Number of Users:	0
Solution Identifier:	Expiration Date:	12:00:00 AM
Customer Name:	Is Expired:	False
Security Group:	Is Valid:	False
WARNING: MarketPlace license is invalid.		
Validate Begin Setup		

Solution Setup Steps

The first part of the setup involves creating necessary solution database tables.

- 1. Click Begin Setup
 - a. This step may be necessary when upgrading the solution in the future.

All	ocatei	t Advanced	Allocation Manager	SOLUTION SETUP
	STEP 1:	Setup Tables	χ	
	STEP 2:	Launch Solution	Create or update required solution tables	

- 2. Click Setup Tables to create the necessary solution database tables.
- 3. Once completed, click Launch Solution

Key Solution Areas

The solution consists of 3 primary components:

Allocation Register

You can create any number of factor definitions to define a set of data intersections (a data buffer) that will be used as an input factor to an allocation definition. The factors define the data buffers for the various components of the allocation calculation, as well as the destination data buffer for writing the results.

Source Example

ALLOCATIONS	FACTORS Filter: Source			•	a (۰												
+ - 0	🖬 🗞 🞇										Sources							
Rule Name 🌹	Description T	Enabled Y	7 1	7	7 1	View T	Account T	Flow T	Origin T	IC T	UD1 T	UD2 T	UD3 T	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Product	From CC to Product					YTD	50299.base 50199.base	None	Тор	None	[Shared Services CCs].base	None	None	None	None	None	None	None
to_Region	From Product to Region					YTD	50299.base 50199.base	None	Тор	None	Root.[FALL_MemberList, Remove_Sales]	Woods.base	None	None	None	None	None	Product
to_Customer	From Region to Customer					YTD	50299.base 50199.base	None	Тор	None	[Shared Services CCs].base	Woods.base	NA.base	None	None	None	None	AfterLevel3

Target Example

ALLOCATIONS	FACTORS	Filter: Target		•		D									
+ - 0		Ş									1	Fargets			
Rule Name 🔻	Description	Enabled	View T	Account T	Flow T	Origin 🔻	IC T	UD1 T	UD2 T	UD3 T	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Region					None	Import				NA.base					Region
DirectProduct						Import			Mach5						Product
to_Product						Import			Woods.base						Product
to_Customer						Import					TotalCustomers.base				Customer

The source, target, numerator, and denominator factors (and, optionally, the offset and parentTarget factors) are then combined into an allocation rule definition. The allocation rule record also defines the rule set, enabled setting, valid entities and date ranges, thresholds, and the allocation step (which determines the order the rules run).

Allocation Example

ALLOCATIONS	FACT	DRS न 🕑	۲																					
+ - 0		Ø 🛱													Allocation De	efinition								
Rule Set	7 Allo	ocation Name	Step 7	Descrip	ption				Y Method Y	Enabled	T s	tart Time	₹ E	ind Time 🔻	Entity Filter	Target	Ţ	Source	Ţ	Num	erator	Denominator	V Offset	Parent Target
GolfStream_D	emo to_	Product		1 From C	CC to	Prod	uct		Standard			2022M1		2023M12		to_Prod	uct	to_Pro	duct	to_f	Product	to_Product	to_Product	to_Product
GolfStream_D	emo to_	Region		2 From F	Produ	ct to	Regio	n	Standard		1	2022M1		2023M12		to_Regio	on	to_Reg	gion	to_F	Region	to_Region	to_Region	Region_to_Customer
GolfStream_D	emo to_	Customer	1	B From F	Prod/R	Regio	n to C	ustom	er Standard			2022M1		2023M12	[Houston Height	ts] to_Custo	omer	to_Cus	tomer	to_0	Custome	r to_Customer	to_Customer	
Туре	Name	Description	1	Enabled	Cb E	E C	S T	v	A		F	0	1	UD1		UD2	UD3	UD4	UD5	UD6	UD7	UD8		
Source	to_Prod	uct From CC to P	roduct					YTD	50299.base 50	199.base	None	Тор	None	e [Shared Se	ervices CCs].base	None	None	None	None	None	None	None		
Target	to_Prod	uct										Import				Woods.base						Product		
Numerator	to_Prod	uct							to_Products							Woods.base								
Denominator	to_Prod	uct							to_Products							Woods								
Offset	to_Prod	uct										Import				None						Product_Offset		
ParentTarget	to Prod	uct									None	Тор				Woods.base						Product		

Allocation Calculation

Allocations are run using Custom Calculate Data Management steps. This allows complete control of when, where, and for what data units a specific allocation set will run. This also allows allocations to be incorporated into larger data management sequences (which might include consolidations, scenario copies, or even other allocation sets).

Using Custom Calculate Data Management Steps also allows the allocation engine to leverage OneStream's builtin multi-threading capabilities since the allocations run using the core Analytic Engine.

_		
	General (Step)	
	Name	Allocation_oneRing
	Description	
	Data Management Group	Allocations
	Step Type	Custom Calculate
	Use Detailed Logging	True
	Data Units	
	Cube	GolfStream
	Entity Filter	E#South Houston
	Parent Filter	
	Consolidation Filter	C#Local
	Scenario	Actual
	Time Filter	T#2022M3
⊡	Point Of View	
	Business Rule	
	Business Rule	FALL_Allocation
	Function Name	Allocate
	Parameters	Set=OneRing

Kicking off the allocation data management step will run the allocation business rule.

Genealogy Reporting

In addition to any reports that you may wish to write against the pre- or post-allocated data in the Cube, the solution also allows for reporting that nests multiple allocation steps together, so you can clearly trace the genealogy of an allocation from its source, thru multiple layers of allocations, to its final result.

	6	ELECT AN ALLOCATION TO SEE GENEALOG	SV & FACTORS	
	3	ELECT AN ALLOCATION TO SEE GENERALOO	ST & FACTORS	
TargetAmt T	TargetPOV			
76.89	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#Mulligan's:U5#None:U6	5#None:U7#None:U8#Custome
116.67	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#[Golf Hub]:U5#None:U6	5#None:U7#None:U8#Custome
53.03	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#[The 19th Hole]:U5#Nor	ne:U6#None:U7#None:U8#Cus
108.71	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	#HR:U2#Mach10:U3#Northeast:U4#[The Links]:U5#None:U6	6#None:U7#None:U8#Custome
145.83	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	#HR:U2#Mach10:U3#Northeast:U4#[Golf Pro]:U5#None:U6#	
145.83	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	#HR:U2#Mach10:U3#Northeast:U4#[Golf Pro]:U5#None:U6#	
145.83	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#[Golf Pro]:U5#None:U64	
	-	LINEAGE 🧠		
Allocation OF	-	LINEAGE 🧠		#None:U7#None:U8#Customer
Allocation OF Account=5020	Ţ	LINEAGE Q Allocation FROM	Allocation TO	#None:U7#None:U8#Customer

Solution Administration

There is minimal set-up necessary to prepare the solution for use. The Administration page (accessed thru the setting gear icon) contains a few global configuration settings and the area to manage the solution license and installation.

Global Settings

Allocateit Advanced Al	location Manager - ADMINISTRATION	Licensed to Customer_01	ŵ	ī.	\$ 礅	i
GLOBAL SETTINGS						
SECURITY ROLE [Manage Setup]						
Administrators 🔹						
CLEAR TYPE	ANCHOR DIM					
Anchor Dim (Fastest)	UD1 ·					
CREATE GENEALOGY						
False 🔻						
Log Data Buffers:						
False 🔻						
Save						

Security Role [Manage Setup]

A security group to control access to the solution (although configuring the solution as a workflow task, using workflow security is preferable).

Clear Type

The Clear Type setting to determine how data is cleared from the cube when allocations are re-run. There are three options. Getting this setting correct is critical to ensure you don't have orphaned data when re-running allocations:

- Anchor Dim (Fastest)
 - Clear using an Anchor Dim. This will clear all previously calculated data in the specific target members used for allocation in the dimension of your choice.
 - For example, if you create an allocation that writes its results to U4#Allocation-In and choose U4 as your anchor dimension, the next time allocations are run all previously calculated data in U4#Allocation-In will be deleted.
- Exact Records (Most Precise)
 - Clear using exact records. This will clear all previously calculated data based on the specific intersections that were written to (using genealogy history as the source). This is more precise, but slower, because it must clear intersections individually.
- Custom (No Clear)

• This can be used if you are using a different method (another rule, or a reset scenario, etc.) to clear data.

Create Genealogy

• A flag to turn on (or turn off) the creation of the genealogy audit trail. Some clients may not want or need the overhead related to the creation of that information.

Log Data Buffers

• A flat to turn on (or turn off) logging of the various data buffers involved in the allocation. This is extremely valuable when testing your allocation set-up but should be turned off when running normal allocations.

Manage License & Solution

The Administration Dashboard also has options related to managing the license key and the solution installation.

Allocateit Advanced Allocation Mar	ager - ADMINISTRATION		Licensed to TEST1	ώ	F	٢	礅	i
MANAGE LICENSE								
LICENSE KEY								
LICENSE INFORMATION								
Vendor Name: Finit	Number of Users:	10						
Solution Identifier: FINAI	Expiration Date:	12/31/9999						
Customer Name: TEST1	Is Expired:	False						
Security Group: TestGroup	Is Valid:	True						
Validate								
MANAGE SOLUTION								
SOLUTION VERSION								
PV730-SV111								
Uninstall UI Full Uninstall								

Manage License

This is the area where you can administer the license key.

Manage Solution

UNINSTALL UI

The Uninstall UI process will only remove the Dashboard Objects and related Business Rules. It will not drop the database tables and your data will still be available.

FULL UNINSTALL

The Uninstall Full process will completely remove all the Dashboard Objects, Business Rules, and database tables installed with this solution.

Defining Allocations

Before populating the allocation register, you'll want to have your allocations well-defined on paper to simplify the process. Even with well-defined allocations, you can expect trial and error when creating allocation definitions.

Factors Definition

The first step is to define the factors that make up the allocation.

Source factor definition

Make sure you are on the home screen of the Allocation Manager solution, click the FACTORS tab, and choose "Source" from the drop-down filter.

	FACTORS Filter:	Source		7 🗃 🕹	۲																
+ - 0 8	🗞 🕎										Factors										
Rule Name 🛛 🔻	Description T	Enabled Y	AllocType 🔻	Cube 🕇	Entity 🕇	Cons T	Scenario 🕈	Time 🕈	View 🕈	Account T	Flow T	Origin 🕇	IC T	UD1 T	UD2 T	UD3 T	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Region			Source				N		YTD	50299.base	None	Import	None	[Shared Services CCs].base	Woods.base	None	None	None	None	None	Product
to_Product			Source				45		YTD	50299.base	None	Тор	None	[Shared Services CCs].base	None	None	None	None	None	None	None
ImportedSource1	Import Source 1		Source																		

You must provide a Rule Name for the factor definition (i.e. row) you create.

You must also provide a valid member filter definition for each of the dimensions from View thru UD8. In theory, this should be able to be any member filter expression that resolves to a valid member list. This would include member expansions, where clauses, substitution variables, custom member lists, or XFBR expressions.

You can also include multiple member filters in a single record by separating them with a pipe (|). So, a field value like "AR.base|AP.base" would be valid. This allows you to identify multiple sets of members that might otherwise be difficult or impossible to define in a single member filter (without using a member list or alternate hierarchy).

You do not (and likely won't) need to define any values in the data unit dimensions (Cube, Entity, Cons, Scenario, and Time), because those dimensions will be defined by the Data Unit definition in the Data Management Step itself. However, in some circumstances, you may want to pull your source data (or numerator or denominator) from a data unit other than the data unit you are calculating. In those cases, you would want to define the alternative data unit in the factor definition. Some examples might be:

- Drivers (Numerator/Denominator) that are stored in another Cube or in a single entity.
- Source data that lives in another scenario.
- Drivers that come from another scenario (i.e. Actual data being allocated based on a Plan spread).

Numerator and Denominator factor definition

Populating the Numerator and Denominator factors is identical to populating the source factor with one small variation – you do <u>not</u> have to define a member filter for every dimension. You certainly can define every dimension if you want to, but if you do not the allocation rule will assume you want to use the same value that was defined in the source factor definition. This flexibility allows you to define a numerator definition that could be used in multiple allocation definitions paired with multiple source factors.

ALLOCATIONS	FACTORS Filter: Nu	umerator	•	-	٢																
+ - 0	🖬 🗞 😫									Fa	ctors										
Rule Name 🛛 🕈	Description T	Enabled 7	AllocType Y	Cube 🕇	Entity 🕈	Cons 🕈	Scenario 🔻	Time 🕈	View Y	Account 7	Flow Y	Origin 🕈	IC T	UD1 T	UD2 T	UD3 T	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Region			Numerator							to_Regions		Тор		None	Woods.base	NA.base					None
to_Product			Numerator							to_Products					Woods.base						
ImportedNum1	Import Numerator 1		Numerator																		

For example, you could have driver factors (numerator and denominator) that are based on departmental headcount. Those drivers could be used in one set of allocations to allocate actual medical insurance fees and used in a completely different allocation to allocate forecasted occupancy fees.

Target factor definition

Populating the Target factor is identical to populating the source factor with one small variation – you cannot override the data unit definitions in the target factor definition. The reason for this is because the data unit you are writing to is defined by the data unit definition on the data management step. There is no (reasonable) way to write data to a data unit other than the one being processed, so defining an overridden data unit on your target factor definition makes no sense.

ALLOCATIONS	FACTORS Filter: N	umerator	•	-	۲																
+ - 0	R 🗞 😫									Fa	ctors										
Rule Name 🔻	Description 7	Enabled 7	AllocType T	Cube 🕇	Entity 🕈	Cons T	Scenario 🔻	Time 🕈	View 🖲	Account 7	Flow Y	Origin 🕈	IC 7	UD1 T	UD2 T	UD3 🕇	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Region			Numerator							to_Regions		Тор		None	Woods.base	NA.base					None
to_Product			Numerator							to_Products					Woods.base						
ImportedNum1	Import Numerator 1		Numerator																		

Parent Target factor definition

Populating the ParentTarget factor is identical to populating the target factor. The ParentTarget is an optional field that helps link the two allocation steps together when the result of one allocation step does not precisely match the source definition of a subsequent allocation step.

ALLOCATIONS	FACTORS Filter: N	umerator	•	-	٢																
+ - 0	🖬 🗞 🕎									Fa	ctors										
Rule Name 🛛	Description 7	Enabled T	AllocType 🔻	Cube 🕇	Entity 🕈	Cons T	Scenario 🔻	Time 🕈	View 🕈	Account 7	Flow Y	Origin 🕈	IC 7	UD1 T	UD2 T	UD3 T	UD4 Y	UD5 T	UD6 T	UD7 T	UD8 T
to_Region			Numerator							to_Regions		Тор		None	Woods.base	NA.base					None
to_Product			Numerator							to_Products					Woods.base						
ImportedNum1	Import Numerator 1		Numerator																		

Offset factor definition

In many cases, an allocation will result in the creation of new data intersections that will double-up the data for a particular item. The new allocated data exists, but the original unallocated data also exists. In these cases it's typical to reverse or offset the original unallocated data, so the data isn't doubled. The optional offset factor allows you to define the target intersection where the offset will be written. The allocation engine automatically flips the sign for all offset calculations. If the direct offset factor approach doesn't yield the appropriate results (due to the complexity of your offset calculations), you can always define your offset as an additional, normal allocation step.

ALLOCATIONS	FACTORS Filter:	lumerator	•	•	•																
+ - 0	🖩 🗞 🕎									Fa	ctors										
Rule Name 🛛 🔻	Description	Enabled	AllocType T	Cube 🕇	Entity 🔻	Cons 🕇	Scenario 🔻	Time 🔻	View T	Account T	Flow T	Origin T	IC T	UD1 T	UD2 T	UD3 T	UD4 T	UD5 T	UD6 T	UD7 T	UD8 T
to_Region			Numerator							to_Regions		Тор		None	Woods.base	NA.base					None
to_Product			Numerator							to_Products					Woods.base						
ImportedNum1	Import Numerator	1	Numerator																		

Sweep factor definition

A Sweep Factor is used in coordination with Allocation Definition Thresholds. By default, balances that fall below a threshold amount are ignored. However, if a Sweep Factor exists those same balances will instead get accumulated and written to the designated Sweep location.

Allocations Definition

Once your factors are defined, you can think of them as a library of data buffer definitions that can then be pulled into an allocation definition. Click on the ALLOCATIONS tab to define your allocations.

ALLOCATION	FACTO	rs 📑 🕑	٢																					
+ - 0		\$ 🛱													Allocation De	finition								
Rule Set	7 Allo	ation Name 🔻	Step 7	Descri	ption			,	Method Y	Enabled	T S	tart Time	¥ E	nd Time 🔻	Entity Filter	Target	Ţ	Source	,	Num	nerator	T Denominator	V Offset V	Parent Target
GolfStream_D	emo to_P	roduct	1	1 From 0	CC to	Produ	uct		Standard		1	2022M1		2023M12		to_Prod	uct	to_Pro	duct	to_l	Product	to_Product	to_Product	to_Product
GolfStream_D	emo to_R	egion		2 From P	Produ	ct to	Regio	n	Standard		2	2022M1		2023M12		to_Regio	n	to_Re	gion	to_i	Region	to_Region	to_Region	Region_to_Customer
GolfStream_D	emo to_C	ustomer	3	B From P	Prod/F	Regio	n to C	ustome	r Standard		2	2022M1		2023M12	[Houston Height	s] to_Custo	omer	to_Cu	stomer	to_(Custom	er to_Customer	to_Customer	
Туре	Name	Description	1	Enabled	Cb E	с	S T	v	A		F	0	1	UD1		UD2	UD3	UD4	UD5	UD6	UD7	UD8		
Source	to_Produ	ct From CC to P	roduct					YTD	50299.base 50	199.base	None	Тор	None	[Shared Se	rvices CCs].base	None	None	None	None	None	None	None		
Target	to_Produ	ct										Import				Woods.base						Product		
Numerator	to_Produ	ct							to_Products							Woods.base								
Denominator	to_Produ	ct							to_Products							Woods								
Offset	to_Produ	ct										Import				None						Product_Offset		
																						rioduct_onset		

You define an allocation by grouping together a Target, Source, Numerator, and Denominator factor and giving that set of factors a name and description. In addition, you can set the value of several other fields:

- The Parent Target and Offset factors (which are optional)
- The Rule Set allows you to group many allocation definitions into a single set that can be run as a unit. This allows the solution to support multiple unrelated allocations (i.e. – Product Profitability allocations and Planning Overhead allocations can co-exist in the same allocation register by simply putting them in different rule sets).
- The allocation Method field indicates what type of allocation logic will be run:
 - **Standard** will allocate source data to the target base on the driver ratios. i.e.: Target = Source X (Numerator/Denominator)
 - **Direct** will simply move data from one intersection to another. You can think of this as an allocation where everything is allocated at 100%. i.e.: Target = Source
 - **Custom** will cause the allocation logic to branch to a section in the code where you can write your own custom allocation logic. It should be rare that you would ever need to use this, but it's provided just in case.
- You can choose which allocation definitions you want to run or not run with the Enabled flag.
- The StartTime and EndTime fields allow you to set a range of dates that are valid for a specific allocation definition. This will allow you to do things like change a driver for a specific allocation at the beginning of a new year without having to create entirely new Allocation Rule Sets. The allocation rules will only run allocation definitions that are valid for the time period of the data unit being processed.
- The Entity field is similar to the StartTime/EndTime as it allows you to set an entity or entities that are valid for a specific allocation definition.
- It's extremely important to understand that the Start Time, End Time, and Entity Filter fields are simply filters that can limit where the Data Management calculation runs.
- If you have allocation steps that rely on the results of a previous allocation step, you can group the various allocation definitions into Steps that will run in sequence. (Think of these as the allocation equivalent of a formula pass). Because data is written back to the Cube at the end of each allocation definition calculation, the results of anything in Step 1 will always be available when step 2 is run. Note: This only refers to data that is dynamically aggregated within a data unit. There is no consolidation performed between allocation steps. If your design requires a consolidation between steps, this can be accomplished by creating a 3-step Data Management Sequence where the first step runs a specific Allocation Rule Set, then the second step runs the appropriate consolidation, and then the third step runs a subsequent Allocation Rule Set.
- The Switch Sign flag tells the allocation engine to multiply the allocation result by -1 before posting the results. This can be useful when writing a step that offsets a previous allocation step. Note: Allocations <u>do</u> <u>not</u> automatically book any type of offset or reversal of the allocation. In order to book an offset or a reversal you must either provide an offset factor or create a separate step using the Switch Sign flag.
- There are two optional properties for Threshold amounts.
 - Source Threshold applies to the individual source value that is being allocated.
 - Target Threshold applies to the individual target (allocated) value that has been calculated.

If you set these thresholds to something other than zero, then any value that falls under the threshold will not be part of the allocation results. For example, let's assume you have the source threshold set to \$250 and you are allocating these three cost centers out to products:

- o HR = \$800
- o IT = \$1,200
- o Legal = \$200

HR and IT costs would be allocated, but Legal would not be. Note: This functionality can be very useful to prevent "tiny numbers" from exploding the size of your data unit and negatively impacting performance. However, if you choose to implement this functionality, you need to understand that your data <u>will not</u> be fully allocated. There will be left-over, unallocated balances. So, you need to think carefully about where, when, and how to leverage this functionality, and what to do with the left-over, unallocated balances.

• The ClearAlloc setting allows you to create an allocation record that simply clears previously calculated data (using the Clear Type Anchor dimension configured on the settings page) <u>without</u> re-running the allocations.

Enable Navigation to Genealogy Drill

To link your cube view to the genealogy reporting, you simply need to include the Linked Dashboard reference in your Cube View's Navigation Links and change the Include Default NavLink Parameters to True.

Ξ	Navigation Links	
	Linked Cube Views	
	Linked Dashboards	[Finit Allocation Manager (FALL)].0_DrillToGenealogy_FALL
	Include Default NavLink Parameters	True

This will allow you to drill from any intersection in a Cube View (including parent levels), get a list of all the allocated base intersections under that amount, and see the full genealogy of how that data was derived.

	a		ð	🕑 Mar 2022			
	ã	ñ	ã	晶 South Houston	4	, Frankfurt	
Pase 🔁	🗆 🏖 North America	🖻 ² Drivers	□ 1 Shared Services CCs	8,178.40		5.500.00	
			1 Human Resources	4,736.84		Calculate	Þ
			12 Legal	3,441.56	\$	Translate	۲
		2 Fairway Woods	□ 1 Shared Services CCs	11,821.60	Þ	Consolidate	•
			1 Human Resources	5,263.16		Spreading	٠
			12 Legal	6,558.44	4	Allocation	
	- Canaua	E - Unvers	Image: Strategic Services CCs	1,020.50	۵	Navigate To 'Genealogy Drill'	
			1 Human Resources	596.22	9	Navigate To 'Genealogy Drill'	
			12 Legal	424.28		Drill Down	

	ogy Drill																				Û	o ×
									S	ELEC	T AN ALLOCATIO	ON TO SI	E GEN	EALO	Y & FACTORS							
RuleSet 🔻 I	RuleName 🔻	Step 🔻	TargetAm	t 🕇 Ta	argetP	ov											Ţ					
OneRing t	to_Region	2	19	2.55 V	#YTD:	A#502	200:F	F#No	one:C)#Imp	ort:I#None:U1#HR:U	2#Mach5:L	J3#Midw	est:U4#	None:U5#None:U6#None:U7#Nor	e:U8#	Region					
OneRing t	to_Region	2	2,56	7.39 V	#YTD:	A#502	2 00: F	F#No	one:C)#Imp	ort:I#None:U1#HR:U	2#Mach5:U	13#North	east:U4	#None:U5#None:U6#None:U7#No	ne:U8	#Region					
												LINEAG	Q									
POV															T Result	₹ G	eneration 7	AltGener	ation T			
												ne:U8#No	ne		10.000.00		1		3			
	200:F#None:C	#Top:I#N	one:U1#HR	R:U2#N	one:U	3#Nor	ne:U4	4#N	one:	05#19	0116.00#110116.07#110	110.00.110										
V#YTD:A#50											e:U5#None:U6#None			uct	10,000.00 * 39.4737 % = 3,947	37	2		2			
V#YTD:A#50: V#YTD:A#	#50200:F#Non	e:O#Impo	rt:I#None:I	U1#HR	:U2#M	lach5:	U3#1	Non	e:U4	#Non	e:U5#None:U6#None	:U7#None	U8#Prod		10,000.00 * 39.4737 % = 3,947 on 3,947.37 * 65.0407 % = 2,567.3	_	2		2			
V#YTD:A#50: V#YTD:A#	#50200:F#Non	e:O#Impo	rt:I#None:I	U1#HR	:U2#M	lach5:	U3#1	Non	e:U4	#Non	e:U5#None:U6#None I4#None:U5#None:Ui	:U7#None	:U8#Prod /#None:L	18#Regi		_	2		2			
V#YTD:A#50: V#YTD:A#	#50200:F#Non	e:O#Impo lone:O#In	rt:I#None:I	U1#HR: ne:U1#	:U2#M HR:U2	1ach5: #Mac	U3#1 h5:U	Non J3#N	ie:U4 North	#Non east:L	e:U5#None:U6#None I4#None:U5#None:U ALLO	:U7#None 6#None:U7	:U8#Prod /#None:L	18#Regi RS	on 3,947.37 * 65.0407 % = 2,567.3	9	3	UD3 T	2 1 UD4 7	UD5	UD6	7 L
V#YTD:A#50 V#YTD:A# V#YTD	#50200:F#Non D:A#50200:F#N	e:O#Impo lone:O#In	rt:I#None:I nport:I#Nor Name T	U1#HR: ne:U1#	:U2#M HR:U2	1ach5: #Mac	U3#1 h5:U	Non J3#N	ie:U4 North	#Non east:L	e:U5#None:U6#None I4#None:U5#None:U ALLO	CATION	W8#Prod #None:U FACTO	I8#Regi RS I T	on 3,947.37 * 65.0407 % = 2,567.3	9	3 UD2	UD3 Y	2 1 UD4 T None	UD5 None	UD6 None	T U
V#YTD:A#50 V#YTD:A# V#YTD Type	#50200:F#Non D:A#50200:F#N	e:O#Impc Ione:O#In AllocRule	rt:I#None:I nport:I#Nor Name T n	U1#HR: ne:U1#	:U2#M HR:U2	1ach5: #Mac	U3#1 h5:U	Non J3#N	ie:U4 North	#Non east:L V	e:U5#None:U6#None I4#None:U5#None:U ALLO	CATION	W8#Prod #None:U FACTO	I8#Regi RS I T	up1 3,947.37 * 65.0407 % = 2,567.3	9	3 UD2	UD3 Y	None			
V#YTD:A#50. V#YTD:A# V#YTD V#YTD Type Source	#50200:F#Non D:A#50200:F#N	e:O#Impo Ione:O#In AllocRule to_Regio	rt:I#None:I nport:I#Nor Name T n n	U1#HR: ne:U1#	:U2#M HR:U2	1ach5: #Mac	U3#1 h5:U	Non J3#N	ie:U4 North	#Non east:L V	e:U5#None:U6#None I4#None:U5#None:U ALLO	CATION	W8#Prod #None:U FACTO	I8#Regi RS I T	up1 3,947.37 * 65.0407 % = 2,567.3	9	3 UD2	UD3 T None NA.base	None			

Running Allocations

Allocations are run by creating Custom Calculate Data Management steps that define the Data Unit(s) being processed and the Allocation Rule Set being run.

Allocation Custom Calculate DM Step

The Data Management Step to run allocations looks like a typical Custom Calculate Step with the addition of one parameter to specify the Rule Set that will be executed when the Allocation runs.

⊟	General (Step)			
	Name	Allocation_oneRing		
	Description			
	Data Management Group	FALL Testing		
	Step Type	Custom Calculate		
	Use Detailed Logging	True		
⊡	Data Units			
	Cube	GolfStream		
	Entity Filter	E#Houston.base, E#Frankfurt		
	Parent Filter			
	Consolidation Filter	C#Local		
	Scenario	Actual		
	Time Filter	T#2022M1, T#2022M2, T#2022M3		
Đ	Point Of View			
⊟	Business Rule			
	Business Rule	FALL_Allocation		
	Function Name	Allocate		
	Parameters	Set=GolfStream_Demo		

Multiple Allocation Rule Sets can be run at the same time by using a comma delimited list of sets in your custom calculate parameters. E.g – "Set=[GolfStream_Demo, Benefits, Occupancy, Blah]" would run all the allocation steps contained in each of those four rule sets in order. Note, for multiple rule sets the comma delimited list must be wrapped in brackets.

Allocations Output

When Allocations run, they will produce two, independent sets of output.

- Allocation Results are written back to the cube. This is the expected behavior of any custom calculation process.
 - o That data can be reporting on using any OneStream reporting tool.
- In addition, data relating the source intersection to the target intersection is written to a supplemental table. If your allocations rules are set-up in such as way that the target (or result) of one allocation step becomes the source data of the next allocation step, the solution can nest those independent steps together in a hierarchy or path. We refer to this as the genealogy (or lineage) of the allocation:

	gy Drill			0 0
	S	ELECT AN ALLOCATION TO SEE GENEALOG	SY & FACTORS	
TargetAmt T	TargetPOV			
76.89	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	22M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#Mulligan's:U5#None:U6	#None:U7#None:U8#Customer
116.67 Cb#Houston:E#[Houston Heights]:C=[USD]:S#[Actual]:T#[2022M3]:V#YTD:A#50200:F#None:O#import:I#None:U1#HR:U2#Mach10:U3#Northeast:U4#[Golf Hub]:U5#None:U6#None:U7#None 53.03 Cb#Houston:E#[Houston Heights]:C=[USD]:S#[Actual]:T#[2022M3]:V#YTD:A#50200:F#None:O#import:I#None:U1#HR:U2#Mach10:U3#Northeast:U4#[The 19th Hole]:U5#None:U6#None:U7#			#None:U7#None:U8#Customer	
			ne:U6#None:U7#None:U8#Cust	
108.71 Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[2022M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#HR:U2#Mach10:U3#Northeast:U4#[The Links]:U5#None:U6#None:U7#None:U8#C				#None:U7#None:U8#Custome
145.83	Cb#Houston:E#[Houston Heights]:C#[USD]:S#[Actual]:T#[202	!2M3]:V#YTD:A#50200:F#None:O#Import:I#None:U1#	HR:U2#Mach10:U3#Northeast:U4#[Golf Pro]:U5#None:U6#	None:U7#None:U8#Customer
		LINEAGE		
		Allocation FROM	Allocation TO T	
Allocation OF	,			Result
	00, CostCenter=HR	Origin=Top, DataType=None, Product=None	Origin=Import, DataType=Product, Product=Mach10	Result 8,000.00 * 35.0000 % = 2,800

• The above lineage is a very targeted view answering the question "Where did this number come from?". However, sometimes you want to answer the question "Where did this data go?". This can be done by selecting any level in your lineage reporting and clicking the magnifying glass to drill down on that specific intersection to see everywhere that data was allocated.

LINEAGE						
Allocation OF T	Allocation FROM	Click to see c	omplete lineage for selected allocation	T	Result	7
Account=50200, CostCenter=HR	Origin=Top, DataType=None, Product=	=None	Origin=Import, DataType=Product, Pro	oduct=Mach10	8,000.00 * 35	5.0000 % = 2,800.00
Account=50200, CostCenter=HR, Product=Mach10	Origin=Top, DataType=Product, Region	n=None	Origin=Import, DataType=Region, Reg	ion=Other NA	2,800.00 * 9.	0909 % = 254.55
Account=50200, CostCenter=HR, Product=Mach10, Region=Other NA	Origin=Top, DataType=AfterLevel3, Cu	stomer=None	Origin=Import, DataType=Customer, C	Customer=Shanks	254.55 * 100	0.0000 % = 254.55

Allocation OF T	Allocation FROM Y	Allocation TO	T Result T
Account=50200, CostCenter=HR, Product=Mach10	Origin=Top, DataType=Product, Region=None	Origin=Import, DataType=Region, Region=Mexico	2,800.00 * 4.5455 % = 127.27
Direct copy	Origin=Top, DataType=AfterLevel3	Origin=Import, DataType=Customer	127.27 * -100.0000 % = -127.27
Account=50200, CostCenter=HR, Product=Mach10, Region=Mexico	Origin=Top, DataType=AfterLevel3, Customer=None	Origin=Import, DataType=Customer, Customer=Spartan Golf	127.27 * 44.4444 % = 56.57
Account=50200, CostCenter=HR, Product=Mach10, Region=Mexico	Origin=Top, DataType=AfterLevel3, Customer=None	Origin=Import, DataType=Customer, Customer=Sports Giant	127.27 * 55.5556 % = 70.71
Account=50200, CostCenter=HR, Product=Mach10	Origin=Top, DataType=Product, Region=None	Origin=Import, DataType=Region, Region=Other NA	2,800.00 * 9.0909 % = 254.55
Direct copy	Origin=Top, DataType=AfterLevel3	Origin=Import, DataType=Customer	254.55 * -100.0000 % = -254.55
Account=50200, CostCenter=HR, Product=Mach10, Region=Other NA	Origin=Top, DataType=AfterLevel3, Customer=None	Origin=Import, DataType=Customer, Customer=Shanks	254.55 * 100.0000 % = 254.55
Account=50200, CostCenter=HR, Product=Mach10	Origin=Top, DataType=Product, Region=None	Origin=Import, DataType=Region, Region=Midwest	2,800.00 * 9.0909 % = 254.55
Direct copy	Origin=Top, DataType=AfterLevel3	Origin=Import, DataType=Customer	254.55 * -100.0000 % = -254.55
Account=50200, CostCenter=HR, Product=Mach10, Region=Midwest	Origin=Top, DataType=AfterLevel3, Customer=None	Origin=Import, DataType=Customer, Customer=Active Hub	254.55 * 27.8035 % = 70.77
Account=50200, CostCenter=HR, Product=Mach10, Region=Midwest	Origin=Top, DataType=AfterLevel3, Customer=None	Origin=Import, DataType=Customer, Customer=Double Eagle	254.55 * 36.1446 % = 92.00

Reporting

Solution Reports

From the Reports Tab in the Solution, the following reports are available:

Statistics

This Dashboard will provide statistics about all allocations run for a specific time period and scenario. You can further refine this reporting by choosing an individual data unit to analyze.

In addition to the normal reporting, this dashboard also includes a threshold setting that can be used for analysis purposes. By setting this to a specific value, you can see how many (and what percent) of your allocated results fall under a certain threshold. Note: Unlike the thresholds on the allocations themselves, this threshold <u>does not</u> impact the data in any way. It's simply an analysis tool (think "what if") to determine what records fall under a certain threshold.

Audit Reports

From the Audit tab in the solution, you can get a full audit history of anything changed on either the allocation factor definitions, or the allocation definitions themselves.

Help and Miscellaneous Information

Troubleshooting & FAQs

For the most updated troubleshooting & FAQs, please refer to the Finit Support Portal, <u>https://support.finit.com/</u>.

OneStream Display Settings

OneStream solutions frequently require displaying multiple data elements for proper data entry and analysis. Therefore, the recommended screen resolution is a minimum of 1920 x 1080 for optimal rendering of forms and reports.

Additionally, OneStream recommends that you adjust the Windows System Display text setting to 100% and do not apply any Custom Scaling options.

Solution Modification Considerations

It is not recommended to rename or modify the included dashboards, components, business rules, etc. unless specified and adequately documented in a solution project's implementation documentation for future reference when upgrading solutions.

A few cautions and disclaimers when modifying a Solution:

- Significant changes to business rules or custom tables within a Solution will not be supported through normal channels as the resulting solution is significantly different from the core solution.
- If changes are made to any dashboard object or business rule, consider renaming it or copying it to a new object first. This is important because if there is an upgrade to the Solution in the future and the customer applies the upgrade, this will overlay and wipe out the changes. This also applies when updating any of the standard reports and Dashboards.
- If modifications are made to a Solution, upgrading to later versions will be more complex, depending on the degree of customization. Simple changes, such as changing a logo or colors on a Dashboard, have a relatively minor impact on upgrades. Changing any custom database tables or Business rules should be avoided and will make an upgrade even more complicated.

Package Contents and Naming Conventions

The package file name contains multiple identifiers that correspond with the platform. Renaming any elements included in the package is discouraged to preserve the naming conventions and solution integrity.

Identifier	Description
FALL	Solution ID
PV7.3.0	Minimum Platform version required to run solution
SV112	Solution version
PackageContents	File name

Example Package Name: FALL_PV7.3.0_SV112_PackageContents.zip